Chemical formulas relevant to COVID-19 drug targets
Find several chemical formulas for potential COVID-19 therapeutics and drug targets currently in development here.
List view / Grid view
Find several chemical formulas for potential COVID-19 therapeutics and drug targets currently in development here.
Collaborative research has revealed two hallmarks of COVID-19 infection associated with more severe symptoms that can be identified by a blood test.
Researchers demonstrate that a subpopulation of circulating white blood cells can act as an early indicator of vaccine efficacy, with potential implications for COVID-19 drug development.
Macaques were protected against SARS-CoV-2 infection both after an initial infection and vaccination with a prototype vaccine, researchers suggest humans could respond similarly.
Post-infection genome editing could be the cause of mutations in the SARS-CoV-2 virus responsible for the COVID-19 pandemic, driving its evolution.
An antibody called S309, identified in a blood sample from a SARS patient, inhibits related coronaviruses, including SARS-CoV-2, researchers have found.
A detailed analysis of the body's immune response to COVID-19 has revealed that it can recognise SARS-CoV-2 in many ways, meaning vaccines can be used to stop the spread of the virus.
Researchers have found that antibodies produced in response to SARS and COVID-19 are cross-reactive, but not cross protective in cells and mice.
A new article has outlined the body's inflammatory response to COVID-19 infection, saying that lipid mediators derived from omega-3 fatty acids could prevent life-threatening inflammation.
Researchers are utilising computers to aid in their investigations into a COVID-19 treatment. Here, we highlight three studies using simulations, calculations and AI to identify a drug to combat the coronavirus.
A vaccine currently in Phase I clinical trials was effective at inducing immune responses against SARS-CoV-2 in mice and rhesus macaques.
In a new article, researchers highlight the need for treatments to combat the potentially lethal overreaction of the immune system in the progression of COVID-19.
Using mass spectrometry, researchers have shown how human cells are changed by infection from SARS-CoV-2, allowing the team to identify drug targets to prevent viral reproduction.
A group of researchers has found that SARS-CoV-2 may not spread by faecal-to-oral transmission, but is able to infect the gastrointestinal tract via the TMPRSS2 and TMPRSS4 enzymes.
Two antibodies named B38 and H4 could work as a COVID-19 therapeutic by neutralising the virus, say researchers in China.