UTX gene mutation “robs” individuals of natural cancer protection
The UTX gene mutation was found to lead to an increased cancer risk, presenting a potential drug target for preventative therapies.
List view / Grid view
The UTX gene mutation was found to lead to an increased cancer risk, presenting a potential drug target for preventative therapies.
The intestine chip was infected with a coronavirus to test a variety of drugs, presenting a new method to investigate COVID-19 treatments.
The study showed that DNA “de-methylation” activity can be targeted to anywhere in the DNA and may be a new therapeutic strategy.
Researchers discovered that cardiovascular damage was caused by reduced microRNA-210 levels in patient cells and mice with type 2 diabetes.
The funding will accelerate clinical development of cell therapies using breakthrough gene engineering technology opti-oxTM.
The study found that deleting the ABI3 gene in mice increased plaques and inflammation in the brain, suggesting avenues for new treatments.
Scientists discover a long noncoding RNA, termed NXTAR, and a small molecule drug that could be used to treat prostate cancer.
Scientists utilised CRISPR technology and deep learning systems to investigate the genes associated with polycystic kidney disease.
Researchers used obese fruit flies to analyse how gene activities affect triacylglyceride levels, unveiling novel drug targets for obesity.
The gene therapy restored the ability of neurons to convert levodopa to dopamine and may help develop therapies to slow disease progression.
Moderna and Metagenomi have announced a collaboration to jointly create next-generation in vivo gene editing therapeutics.
Tune in to this podcast to learn about AAV vectors for gene therapy delivery and engineering CAR T cells against solid tumours.
Turning off NHE6 in mice in pre-clinical studies prevented amyloid beta aggregation, a key feature of Alzheimer's disease, pointing to new therapies.
Scientists have used several machine learning models to predict bacterial gene exchange, which could reveal novel antibiotic targets.
The small molecule successfully targeted the C9orf72 gene that causes amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD).