Sensory neurons can be used to discover therapies for ALS
Posted: 9 November 2018 | Drug Target Review | No comments yet
New approach for testing for ALS may be useful to reverse debilitating disease…


Scientists have shown that mutations in specific genes that destroy motor neurons and thereby cause the devastating effects of amyotrophic lateral sclerosis– also known as ALS or Lou Gehrig’s disease — also attack sensory neurons.
The discovery indicates that studying sensory neurons could provide new mechanistic insights to prevent, slow, or even reverse ALS.
VTCRI scientists examined sensory neurons in cell cultures and in mice with ALS-causing mutant genes. They found that sensory neurons’ axons exhibit similar pathological changes found in motor neurons afflicted with ALS.
Drug Target Review has just announced the launch of its NEW and EXCLUSIVE report examining the evolution of AI and informatics in drug discovery and development.
In this 63 page in-depth report, experts and researchers explore the key benefits of AI and informatics processes, reveal where the challenges lie for the implementation of AI and how they see the use of these technologies streamlining workflows in the future.
Also featured are exclusive interviews with leading scientists from AstraZeneca, Auransa, PolarisQB and Chalmers University of Technology.
“Similar to motor neurons, ALS-inducing factors first affect the ending of sensory neuron axons, the site where they form synapses with other cells, and then the rest of the axon falls apart,” said Gregorio Valdez, an Associate Professor with the VTCRI and a faculty member in the Department of Biological Sciences in the College of Science at Virginia Tech. “Because sensory neurons are relatively easy to work within a dish, in stark contrast to motor neurons, they are an attractive neuronal population for discovering and testing molecules to treat ALS.”
“We’re closer to understanding where the problem starts within a given cell, and especially neurons, in ALS,” Prof Valdez said. “However, we need to understand the reason such cells succumb to ALS-inducing factors. It is also important to develop and optimize assays to test molecules with the potential of preventing neurons from giving in to ALS-inducing factors. Our findings show that sensory neurons could serve both purposes.”
In practice, motor neurons and sensory neurons work together. Sensory neurons constantly relay information, directly and indirectly, to motor neurons. This information could be about temperature, touch and the contractile status of skeletal muscles. “In essence, we now have a high-content and high-throughput assay using sensory neurons in a dish to look for molecules that could prevent ALS-related pathology,” Prof Valdez said.
The study has been published in Scientific Reports.
Related topics
Disease research, Neurons, Neuroprotection, Neurosciences, Research & Development
Related conditions
ALS, Lou Gehrig's Disease
Related organisations
Virginia Tech Carilion Research Institute (VTCRI)
Related people
Gregorio Valdez, Sydney Vaughn